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Generalized Networks: Networks
Embedded on a Matroid, Part I

J. Bruno

Pennsylvania State University
University Park, Pennsylvania

L.. Weinberg

The City College of
The City University of New York
New York, New York

This paper represents the second part of the paper with
the same title which appeared in Networks, Volume 6, Number 1.
In this part we apply the theory presented in Part I to define
a generalized network and derive its important properties.

3. RESISTANCE NETWORKS AND GENERALIZED NETWORKS

In this section we introduce the concept of a generalized
resistance network and study some of its properties. The gen-
eralized network is an extension of the concepts of ordinary
p-port resistance and RLC networks to matroids. As discussed
in Part I, though we carry out the analysis in terms of resis-
tance networks, the application to RLC networks is valid and
given immediately by simple substitution.

3.1 Resistance Networks

In this subsection we describe a p-port resistance network
as a preliminary to the discussion of the generalized resista?ce
network in the next subsection. A p-port resistance network 1s
an interconnection of two types of elements: port elements and
resistance elements. A port element is denoted by a d%rectgd
edée (Figure 11) and the convention used is that the direction
of positive current (i) coincides with the direction of the ar-
row. Positive potential difference (v) means that the arrow
points from the vertex of high potential to the vertex of low
potential, Note that the product vi represents the instanta-
neous power delivered to the port element. A port edge may tbus
be considered as a distinguished edge. A resistance element 1s
identical to a port element with the additional.requlrement that
V = iz, where 0 < z < » and z is called the resistance of the

element,

e o

Networks, 6: 231-272
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O O
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Fig. 11 Network Element.

The resistance and port elements are interconnected in
some manner to form a network and this interconnection is rep-

resented by an oriented graph which is called the network graph.

If the network consists of n elements, p of which are port
elements and n-p resistance elements, then let

v t . [
Vy T vy Vn—p]
a
an . - 4 - ]
1y 1'”ln—p
be the vectors of resistance voltages and currents, respectively.
Similarly
v t_ [v
Yo n—p+1"'vn]
and
i &= [i i ]
i, n-p+l"'ln

are the vectors of port voltages and currents, respectively.
Also with each resistance element there is an associated resis-
tance Zs for i =1, ..., n-p. The matrix

z = diag[zl,...,

b Zn—p

is called the resistance-element impedance matrixz. The vectors
v, and i. must satisfy

b b
X.b = Zbl-_b (la)
or
ip T ¥y (1p)
-1 \ .
where Y, = 2y - Y, is called the resistance-element admittance

matrix. Let

—p - p
The vectors v and i are called the metwork voltage and current
vectors, respectively.
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The vectors i and v are not only required to satisfy (la)
or (1b) but in addition must satisfy Kirchhoff's current law
(KCL) and Kirchhoff's voltage law (KVL). Thus the algebraic
sum of the currents in any bond of the network graph must be
zero and the algebraic sum of the voltages around any polygon
in the network must be zero. These last two constraints on
the network voltage and current vectors are called topological
constraints and the relation (la) is called an Ohm's Iaw
constraint.

The topological constraints on the network voltage and
current vectors can be stated differently. Let G be the net-
work graph of a p-port resistance network and I and V the 1-
cycle space and the coboundary space, respectively, of G over

PR
the field F. Then i satisfies KCL if and only if i is the
representative vector of some member of I and v satisfies KVL

if and only if XF is the representative vector of some member
of V. Consequently Kirchhoff's laws can be written symboli-
cally as

ieTI (KCL) (2)
and o

v eV (KVL). (3)
The equations (la) or (1b), (2) and (3) are called the network
equations.

In order to retain the familiar properties of Z, the open-

cireuit (o.c.) impedance matrix, and Y, the short- czrcutt (s.c.)
admittance matrix, of a p-port resistance network we define an

auxiliary port-voltage vector e, =Y, Then the o.c. imped-

ance matrix of a network exists if for amy prescribed sgt of
bPort currents i the network equations uniquely determine the

response e . Similarly the s.c. admittance matrix of a network
- P

exists if for any prescribed set of port voltages Eﬂp the net-

work equations uniquely determine the response i}). If Z exists,

then the network operation, viewed from the ports, can be ex-

Pressed as

and if Y exists, then

|
g
o

i
-Pp -Pp
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Previcusly in Section 1 we indicated that certain matrices
were related to p-port resistance networks. At this time, we
give the precise definitions for two of these matrices.

A symmetric matrix of real numbers whose main-diagonal ele-
ments are greater than or equal to the sum of the absolute mag-
nitudes of all the other elements in the same row (column) is
called a dominant matrix.

A p X p symmetric matrix of real numbers is called a para-
mount matrix if every principal minor of order r is greater than
or equal to the absolute value of any rth-order minor formed from
the same rows (columns) for r = 1, ..., p-1.

The rest of this section is devoted to the generalized re-
sistance network and its bearing on p-port resistance networks.

3.2 Generalized Networks

In this subsection we define a resistance network on a
reqular matroid. As in the case of p-port resistance networks
we will consider the generalized network to be an interconnection
of two kinds of elements: resistance elements and port elements.
In general the generalized network will consist of n elements, P
of which are port elements and n-p resistance elements.

Let M = (C,E) be a regular matroid on a finite set E. The

set E is partitioned into two sets E and Eb. The elements in
p

Ep are the port elements and the elements in Eb the resistance

elements. Enumerate the elements of E such that

E =
EbL)Ep ’
where
E = {el,ez,...,en_p}
and
E =
o {en—p+1'°"'en} .

With each element e, in E we associate two variables u, and

w., (for i = 1, ..., n). We define the vectors u and w as follows:

and w
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where
t
Wy = [wl. .wn_p]
w t_ [w w ]
-p n-p+l° " ""n’’
t
a, = [ul. .u -p]
d
an . - . .
—p n-p+1° " " "n" "’

We have chosen not to use v and i as variables in the gen-
eralized case in order to give a single analysis of the gener-
alized network which later can be specialized to an impedance
and/or admittance formulation.

As in Subsection 3.1, we associate with each member of Eb
a positive number di (i=1,...,n-p) and require that

Yp TPy

where

D = dlag[dl,dZ,...,dn_p].

D is called the resistance-element immittance matrix.

The next step in defining a generalized network is to write
the "topological" constraints for the vectors u and w. Since M
is regular, there exists a regular vector space R on E over the
field of real numbers such that the supports of the primitive
vectors of R are in 1-1 correspondence with the circuits of M,
that is, M = MR' The vector space R is not unique but since R

is a regular vector space, we think of choosing a particular R
as fixing the relative orientation of the elements in each of
the circuits of M. To see this choose C ¢ CR; then there exists
a primitive vector f € R such that

£l = c.

The nonzero values of f are either #1 and therefore can be used

to determine the relative orientation of the members of C. Tﬁus

if f(ei) = f(e;) = %1, we say that e, and e, are gimilarly ori-
]

ented in ¢ and if fle) = —f(es) = 1, we say that e_and e_ are

oppositely oriented in C. By (2.2-4), the choice of R uniquely
determines the relative orientations of the elements in C.
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t
Generalizing KCL and KVL, we require that u be the repre-

sentative vector of some member of R and EF be the representa-
tive vector of some member of LR, the complementary orthogonal
subspace of R. We write the generalized KCL and KVI, symboli-
cally as

u e R
and

w e LR,
We define a generalized network N as follows:
N = (MR’ R, D; E),

where MR is a regular matroid on a finite set E and R is a

corresponding regular vector space on E over the field of real
numbers.

The generalized network equations are

u e R, (1)
w e -LRI (2)
W, =Dbu., (3)

where D = diagfd.,...,a 1.
1 n-p

Equations (1) and (2) are the "topological" constraints on
u and w while Equation (3) is an Ohm's law constraint.

At this point we will make the appropriate correspondences
betyeen the generalized network and the ordinary impedance and
admittance formulations of p-port resistance networks.

.Lgt G be a network graph of a p-port resistance network and
partition E(G) according to port and resistance designations.

Thus
E(G) = E(G)_ U E(G) ,
b e
where
E(G)b = {el,...,e _}
and

E(G)

P {en_p+l,...,en}.
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The edges in E(G)b correspond to the resistances and the

edges in E(G)p correspond to the ports. The quantities

t t t t t t

i = i , i = Z, = i Feoer ’
i (}_b _Z_L_P), v (y_b,xp) and b dlag[zl zn—p] where
0 < zi <o fori=1, ..., n-p, are defined in Subsection 3.1.

There are two possible ways to make a correspondence between
generalized networks and p-port resistance networks.
Consider the following correspondence. Suppose

u=i (4)
Then it follows that
W=y, (5)
R =1, (6)
= 7
MR P(G) (7)
and
= 8
D zb, (8)

where I is the l-cycle space of G over the field of real numbers.
Thus the requirement that u corresponds to i determines the gen-
eralized network

NZ= (P(G), I, zb; E(G)).

If one chooses to have v correspond to u, the generalized net-
work N, is obtained:

= ’ ; E(G)).
N, (B(G), v, Y ; E( ))
V is, of course, the coboundary space of G over the field of

real numbers. '
The subscripts Z and Y reflect the fact that NZ will lead

to an impedance formulation and N, yields an admittance formu-

lation. The correspondences between generalized networks and

P-port resistance networks are listed, for future reference,

in Table 3-1. ]
Boesch [21] has shown convenient formulas for Z and Y 1in

terms of topological matrices associated with the network'qraPh

and in the next subsection the generalized network is subjected

to a similar analysis and the results are interpreted in terms

of matroid structure.
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Generalized Networks Network Equations
(i) u e R
N = (MRI RI D; E) (ii) w E_LR
(iidi) Eb:=DEb
(1) i eI
N, = (P(G), I, Z i E(G)) (ii1) v gV
(iii) Yy = Zb-l—b
(1) v eV
N, = (B(G), v, Y i E(G)) (ii) i eI
(iii) E szb

Table 3-1 Table of Correspondences.

3.3 Analysis of Generalized Networks

Having defined a generalized network, the next guestion to
answer is: "how does it work?" Can we take it apart to show
"what makes it tick?" 1In other words, 1f we specify-gry how do

the network equations determine u and w. We first introduce
some definitions and notation.

A network N = (MR’ R, D; E) is called nondegenerate if one
can specify up arbitrarily and this specification, along with

the network equations, uniquely determines u and w. Let N de-
note the c¢lass of nondegenerate networks.

t
Suppose f € R and X is a representative vector for f. We
define

=]l = [1£]}

Also, as was done in the network equations, we write

xeR
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to mean that there exists a vector f ¢ R such that EF is the
representative vector of f. We call x elementary (primitive)
if there exists an elementary (primitive) vector f in R such

that 5? is the representative vector for f.

The next theorem is the main theorem of this subsection
and it characterizes, in terms of matroid structure, those gen-
eralized networks which are nondegenerate. Moreover, in the
course of proving (3.3-1) we derive explicit expressions for
the "response”" of a nondegenerate generalized network to an ar-

bitrary port vector E}).

Theorem (3.3-1): A network N = (MR, R, D; E) 28 in N if and

only i1f Ep contains no circuit of M;.

Proof: Let N ¢ N. Then_gp can be specified arbitrarily. As-
*
sume that there is a circuit C of Mp such that C C E,. Then

there exists a primitive vector x e LR such that
lxll= c S5,
- p

Since u ¢ R, it follows that

t
x u=0.

Moreover, since ”illgng, there exists a linear relation among
the coordinates of u_ . This contradicts the hypothesis that
N ¢ N and accordingl;)no circuit of M; is contained in Ep

To show sufficiency, suppose that no circuit of M; is con-
tained in E . Let R* be a representative matrix for {R. Since
ueR it fgllows that
(1)

*

R™ u = 0.

Also since w ¢ LR, w can be expressed as some linear combination

of the rows of R*, that is,

r*t (2)



240 BRUNO AND WEINBERG

where

(A
I
H-G LI ) 1_._‘6

and

r = dimension (LR).

If we partition R* according to

u. and u
from (1) that

, it follows
b p’ *t

* + r* _
% 2 Rpiip O

] (3)
where
* *
R* = [Rb:R;].
. -1 -1 . . :
Using u, =D EI>(D exists since 4, > 0 for i= 1, .., n-p)
in (3) we get
R;D—lw = - R*u . (4)
—b pP—p
From (2) it follows that
= r*t (5)
Yy =R, £
and
t
w_= R* o. (6)
LA D ¥

Substituting (5) into (4), we get

[ * D—l *t = - * . (7)
P Rle=-Ra,

We show by contradiction that the hypothesis implies
det [R) p Lg*t

Ry 1 # 0.

Assume det[Rglj_lR;t] = 0.

Applying the Binet-Cauchy

formula [35] twice to det[RﬁIfﬁLR;t], we get
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i’_._’i l,.-o’r 2
* —1_xt. _ -1 1 r *
det[E{bD Rb ] - ED (ilI.-olir) [‘F{b (il""'ir)] . (8)

1 <ip <-.e< i <np

If B is a matrix, the notation

1. 460,11
B ('l 'r')
jl,...,]r
represents the determinant of the submatrix of B formed by
using rows i., ..., ir and columns jl' R

1 r
Since det[Rglj_let] = 0, it is clear from (8) that the

rank of R; is less than r. Consequehtly if s g;Eb and a{S) =r,
det{R;(S)] = 0. Therefore (see Table 2-2, line 2) no S g;Eb is

a base of M By (2.4-2), Ep is not contained in any base of

R.
* * .
MR' Therefore E contains a circuit of MR; but this contra-

. ) -1 .t
dicts the hypothesis. Accordingly detIRgl) R; ] # 0 and from

(7) we get
O = - *D l *t -1 R* . (9)
- {Rb Rb ] P—p

. -1
Substituting (9) into (5) and (6) and using Uy © D Yy we
get the following results:

™ [ _at s 1 _xt.-1 %
¥v “Ry [RbD R, ] RP
Ll il I e worurged B H
EE’ R [Rblj Rb o
L] L
- - =1 4t x -1 _xt,-7 _=*
AN D R; [Ry, D Ry 177 R
g = |-- R a . (11)
- N -p
u 1

Equations (10) and (11) show the explicit dependenc§ of u and w
on E£>' Since (10) and (11) were obtained by applylng necessary
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conditions and are invariant with respect to the choice of R¥,
it follows that specification of u_ uniquely determines u and
w. Therefore N e N. O p

An immediate corollary of (3.3-1) is

Theorem (3.3-2): Let N = (MR’ R, D; E) ¢ N and R* be a repre-
sentative matrixz for 1R Partition B* as R* = [Eg{R;], where
Rg and R; correspond to the resistance and port elements, re-

spectively. Then

- — —

2t % =1 _xt.__7 %
Wy ~RECIR, DU RC1T Ry
w= || = |~y u
9., —R;t[R;D Zﬁgt]‘l R} b
and -7 - '
[ ] L gt (e ] rity-1 p*
2p p Tp? Ry b
u=1-- S gﬁp.
u 1
.._p_l L p

The Tmmittance matyrix XN is defined as
t,_x -1 _xt -1 %
X_ = R* D )
N P [Rb Rb I Rp

Therefore XN characterizes the "operation" of the generalized

network in terms of a port description, that is,

Figure 12 depicts the port description of a generalized network.
An alternate characterization of a nondegenerate network

is given by the following thecorem which is a consequence of
Theorem (3.3-1).

Theorem (3.3-3): Let N = (MR’ R, D; E) and R* be a representa-

tive matrix for LR. Partition R* as p* = [Rg;R*], where Rg and
* p

and Rp correspond to the resistance and port elements, respec-

tively. Then N is in N if and only if rank (R}) = rank (R").



_—

GENERALIZED NETWORKS ON MATROID -~ IT 243

Ot o
un-p+l wn—p+l
0 " Wn-ph Upepr
= -)(N
' I
w u
' NeN { n n
) |
N=(tp R, D;E)
Oy ———0
u w
n n
O-—j l————o0

Fig. 12 Generalized Network.

The beauty of matroid theory becomes apparent as one re-
alizes that the matroid structure allows one to visualize the
"interconnection" of the elements in E of a generalized network
N = (MRr R, D; E). Theorem (3.3-1) is an excellent example of

this since it gives the existence of XN in terms of the matroid

structure. Also matroid theory eliminates the necessity of
thinking in terms of admittance or impedance and thus fccuses
attention on the essential features of the analysis of p-port
resistance networks. As we will discuss later, however, the
different matroid classes, as depicted in Figure 10, allow us
to distinguish in a precise way the differences between the ad-
mittance and impedance formulations of p-port resistance net-
works.

Let us return now to Table 3-1 and interpret XN and XN .

Z Y

It is easy to see that XN = Z, the o.c. impedance matrix for

the resistance network, aid XN = Y, the s.c. admittance matrix.
Y
N=(My,R,D;E) | N, = (P(G),I,Z;E(G) | N,= (B(G),V,Y,;E(G))
¥p T 7 Ayl “Ip” XNzip =p ~ XNY~p
XNZ= Z XNY =Y

Table 3-2 Table of Correspondences.
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To conclude this subsection we show how one obtains the
known results on the existence of Z and Y as special cases of
(3.3-1), namely, Z(Y) exists if and only if there exists no
bond containing only current sources (there exists no polygon
containing only voltage sources).

Theorem (3.3-4): Let G be the network graph of w p-port resis-
tance network. Then Z(Y), the o.c. impedance (s.c. admittance)
matrix, exists 1if and only 1if G><E(G) (G« E(G) ) contains no
bonds (polygons). p

Proof: By (3.3-1) and (2.4-3) X _ exists if and only if B(G)

NZ
has no circuits contained in E(G)p. By the definition of a con-
traction, B(G) has no circuits in E(G)p if and only if B(G) XE(G)p
has no circuits. By (2.1-9), B(G) xE(G)p = B(G xE(G)p). There-
fore B(G) XE(G)p has no circuits, and hence Z exists, if and only
if G XE(G)p contains no bonds.

The proof for Y follows the same pattern as that for Z.0
Example 6: Let G be the graph in Figure 13 and
E(G) = E
(G) (G)b L)E(G)p,

where

E(G)b {el,...,e

5}

and

E(G)P {e6.e7.e8}.

Z, the o.c. impedance matrix, exists since G xE(G) contains no
p

bo?ds (§ee Figure 14). Y, the s.c. admittance matrix, does not
exist since G -E(G)p contains a polygon (in this case a loop).

G 'E(G)p is shown in Figure 15.

ey ey

By

Fig. 13 Graph of Example 5.

R
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Fig. 14 G><E(G)P.

e
v
e ‘
€y

Fig. 15 G 'E(G)p.

3.4 Properties of Xy

In this subsection we prove that if N ¢ N, then Xy is a

paramount matrix. The method of proof yields "topological”
formulas for the generalized network and consequently extends
the concept of a "topological" formula to matroids.

We also treat, in this subsection, the special case when
r(MR) = p and derive for this case an additional necessary con-

dition on X ..
N

To conclude this subsection we indicate that the modified
topological matrices introduced by Cederbaum [31] for p-port
resistance networks can be extended to generalized networks.

Theorem (3.4.1): If N = (MR, R, D; E) belongs to N, then XN 18
a paramount matrix.

t -1 t. - * * ok : -
P . = R¥ * * 1 Rr* R* = iR*] is a rep
roof: xN Rp [RbI) Rb ] Rp' where [RbI o
resentative matrix for 1R, R; = r X (n-p), R; = rxp and

-1 _&t
r= r(MR) = dimension (1R). By (3.3-3), det[RﬁI) R; 1 # 0 and

consequently n-p > r.
Set

-1 *t]-l.

A= [R'D "Ry

At this point we introduce a useful notation: let iS rep-

resent the index set il < e <iS. Then using the Binet-Cauchy

formula [35] it is not difficult to show that
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i AN AN
X -TS = Z: A ]; R* '3'_ R; 5 (1)
N Js 1§ksfy [ p s s
1<ﬁ <r
— s-——
for s < r, and
;s
- = 2
XN 3 0 (2)
s

for s > r. The summation in (1) is over all index sets ES and
hs satisfying

1 ﬁ.k < eea< k <r

1 S
and
1 <h. € «.co¢h < r.
—_— 1 s —
Furthermore [35]
k'
_ Biox =1 _at r-s
h_ LR D TR I S
alg = T =S (3)
S det[RgI) R;t]
S
for s < r, where B = Z (h.+k.). The indices k! <---< k' _
i i 1 r-5

i=1
S 1 s

l, «.., r. Similarly E;_s and Es form a complete set of indi-

Er 1
Al - = 4)
k At (

r det[Rgr D—le 1

Expand the right-hand side of (3) using the Binet-Cauchy
formula. The result is

k' - =
~1 - _fm k h__
s ) B R N AR A
h - m m
r-s 1_<_mr S<n-p r-s r—g r-5
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for s < r. Substituting (5) and (3) into (1) we get:

1 D—l gr—s
X 55 - > ==Lk, (6)
- * %t
s 1<m __ <n-p det[R D "R ']
where S
J X — -
. i k! k
= r—- S
H= 2 (-1t R¥(=57° Jr* | =
m P\l
1<k <r r=s s
and s
'21kl Hz 8 Bs
1= * - *
= - - R -—
K 2: (=1) Rb m p\1i
1<h <r r-s s

for s < r.
The terms H and K of (6) are easily seen to correspond to
the Laplace expansion of minors formed from some r columns of R”
We introduce the useful notation:

* - _ * l, ........................... s .
R (mr-slls) =R (m cerm n—p+il,---,n—p+iS )

Then (6) becomes

-1 _at

_ r
i - —
\z) = r-s 1) R*@m__|3.)
js 1<m 2:<n—p det[R_D R; ] ° lls B '
i R,

(7)

for ¢ < r.
To obtain the case s = r, we combine (4) and (1) to get

R¥ },...,; R* },...,r' )
r P ly...,lr P ]l,...,jr . (8)
-1 t
r det[R;D R;]

Slnce-LR is a regular subspace (see 2.2- 5) the minors of
order r of R*¥ are restricted to the values *L or O, where L is
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m
some positive number. Also the terms D_l ﬁr—s are positive.
r—-s
It should therefore be clear from (7) that a principal minor
of order s < r is greater than the absolute value of any

th . .

s —order minor formed from the same rows. Moreover, consider-
ation of Equations (2) and (4) permits one to conclude that X
is in fact a paramount matrix.

We have the following corollary to (3.4-1)

Theorem (3.4-2): Let N = (M, R, D; E) e N and R* be a repre-
sentative matrix for L R. Partition B as R* = [Rg:R;], where
Rg and R; correspond to the resistance and port elements, re-

spectively. Then

- D—Z -8
7, 2: Mg . l_ ,_
X {="1= ———Lp* 7 ) R*(m J.)
F\7g Jfﬁr <n-p A rme s e
for g < r,
Es
X = =
N Js
for ¢ > » and
- *(.I,..._,I' )(-(1,"°)P)
(e N T \ap i)
N A
where A= det IRZ’; pl R;t].

It should be apparent that from (3.4-2) we can obtain

"topological" formulas for the generalized network. Let us

consider the case s < r and (XN) .» the i,j element of Xy
J

l
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= * - . * = .
) -1 T2\ R m,_y [ &7, [9)
1<m <n-p My-1 L L
(Xg), . =—F3= ()
l,j _ R* l 7 oo oy r R* 1 7 s ey Y
23 D'l ?r hl,...,hr hl""’hr
1<h <n-p hr L L
— r—

where L is a positive number equal to the absolute value of a

nonzero rth—order minor of R*. The denominator of (A) was taken
from Equation (8) in the proof of (3.3-1).
Let BM denote the class of bases of MR. Set
R

B(Eb) = {b|b ¢ BMR and b E'Eb}'

For any S = {ei Ppeees€y } g;Eb we define [D_ls] as
1 t

1 1

-1 1
[D 78] =3 q. a.
1 1 1

1 2 t

Accordingly we can write A, the denominator of (A), as

A= 2 D 1b].
beB(Eb)

The numerator of (A) reguires some special attention. A

typical term in the numerator of (A) is nonzero if and only

if the sets {e_ ,...,e e .y and {e  ,....e g€ +'}
m, m__, nptl oy r-1 P
are both bases of MR' Accordingly we define Bi,j as
B = B, and s U {e .} e B}
i,J {SE; Ebls L){en—p+i} € MR n-p+j MR

for all 1 < i,j < p.
Although the members of Bi 3

14

are in 1-1 correspondence with

the nonzero terms in the numerator of (A), there is still the
matter of the sign of each term when i # j. Partition the set

B. . into two sets BT . and B, ., where for i # j
l'] lrj 11]
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= . d . are oppositely oriented
Bi,j ts e Bi.jlen-pﬂ P Cnop+j PP Y
i i i \ f
in the circuit J(S L){en—p+i}' en-p+j) o MR}
and
- _ imilarly oriented
Bi,j {s ¢ Bi,j]en-p+i and en—p+3 are similarly oriente
. . . ) . £ M3
in the circuit J(s L){en—p+i} en-p+3) of My
and for i = j
B" . =B
i,i i,i
and
Bl,i =¢-

Theorem (3.4~3): Let N = (MR, R, D; E) ¢ N. Then

-7 -1
Y, s - ¥ Tl
Ser . 7eB .
Tad 1sd
> sl

beB(Eb)

Hwls,5 =

Proof: To prove (3.4~3) we merely have to show that the sets
+

Bi 3 and Bi 3 correspond to the negative and positive terms,
4 ’

respectively, of the numerator of (XN)i 3 when i1 # Jj.

r

Let S ¢ Bi 3 and form the base

r

b=3:5 L){en_p+i}.

Let R* be a standard representative matrix for LR with respect
to b. Consider the submatrix (j >i)

S

1 0...0 0 X
1
0O 1 ...0 0 X,
R* I N . -
(b U {en-p‘l'j }) : . : : .
0 o ...
1 0 r—1
_O 0 .. . 0 1 X _
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The minimal dependent sets of columns of R* correspond to cir-

cuits in MR (see Table 2-2). By the definition of Bi ; it
’

follows that xr = *1. Moreover, the set s U {e }

n-p+i’ “n-p+j
is dependent in MR and contains a unique circuit C which has

. if = + .
both en_p+i and en—p+j as members Clearly i xr 1, en—p+1
and en-p+j are oppositely oriented in C and if X, = -1, en—p+i
and e . are similarly oriented in C. Moreover, if x_ = +1,

n-p+j b o

14
the corresponding term will be negative. The theorem follows.QO
In (3.4-3) we have extended the notion of a "topological"

formula to generalized networks, that is, we can evaluate the
entries in XN by a formula which depends only on the resistance-

element immittance matrix and the structure of the matroid MR'

Example 6: Let G be the graph in Figure 16 and

NZ = (P@G), I, Zb; E(G)), where
z, = dlag[zl,zz,ZB]
and
B(Eb) = {{el,ez,e3}}.
Consequently
b=
21223
To calculate (XNZ)l,l we need Bl,l:
+
= =B -
Bl,l {{el,eB}, {e2,e3}} 1,1
Therefore
2 + 242
z
R 23=z+21‘
N,"1,1 1 2
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+ -—
To calculate (XNz)l,Z we need 51’2 and Bl,2:

+ .
51’2 = {{el,e3}}
and
B = ¢.
1,2 ¢
Therefore
1
(X ) — _._ﬁ.f}___ = z
Ny"1,2 1 2"
Z1%5%3
Calculating (XNZ)2r2 we find
(XNZ)Z,Z = Z2 + Z3-
Thus
+
2172 3
X =
NZ z +
2 Zy"2y
€
€4 e, e

S

€3

Fig. 16 Graph of Example 6.

We now turn to the special case of generalized networks

satisfying @(Ep) = r(ME). These networks have special signifi-

cance in the case of NZ and N . For instance, if N = NZ, then

a(Ep) = r(ME) becomes a(Ep) = r(B(G)). Thus the number of port
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elements coincides with the number of elements in a coforest
of G. 1If, moreover, NZ e N, then Ep contains no bond of G, and

consequently Ep is a coforest of G. If N = NY e N and
a(Ep) = r(P(G)), then Ep is a forest of G.

The above illustrations are encompassed by the following
theorem.
Theorem (3.4-4): Let W = (My R, D; E)eN. Then r(ily) = a(E,)
if and only 1f Ep 18 a base of ME.

Proof: 1If Ep is a base of M*, then r(ME) = a(Ep). Conversely,
suppose r(ME) = a(Ep). Since N € N, it follows from (3.3-1)
that B is a base of M*. O

p R

Theorem (3.4-5): TLet N = (MR, R, D;y E) ¢ N and P(ME) = a(Ep).

Then Xy = AZ?At, where A ig a totally unimodular matrix.

Proof: By (3.4-4), Ep is a base of M;_ Accordingly Eb = Ep is
a cobase of ML. ILet R* be a standard representative matrix of

R
R* with respect to the cobase E, :

R* = [1 IR*].
n-pl p

By (2.2-6), R* is a totally unimodular matrix. Calculating X
b

using R* we find that

X = R*tD R*,
N P P

Since the transpose of a totally unimodular matrix is totally
unimodular, the theorem is proved. O
Under the hypothesis of (3.4-5) we know that XN is a para-

mount matrix. In the next theorem we give an additional neces-
sary condition on XN. Unfortunately these two conditions are

not sufficient as we will show in Example 7.
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t .
Theorem (3.4-6): Let @ = [qij] =ADA", where A = [aij] 18
ap xb totally unimodular matrix and D is a b x b diagonal
matric with positive diagonal terms. Then

Qi,r,c =47t lqrc' - lqril - !qicl >0

for all 1 <1, v, ¢ <p.

Proof: The i,3th element of 0 is

b
q,. = Z dkaikajk'

It is well known [24] that for fixed i and j all the nonzero

products aikajk' for k=1, ..., b, have the same sign. Con-
sequently

! b

a..l= ) dla. .a. |-

ij k=1 k' ik jk
Therefore we can write Q. as
i,r,c
0 2
. = d .+ - - .
%,r,c kzl el + lagagd = laganl - lagag D

We prove Qi roc > 0 by showing that each term in the summation

is nonnegative.

Case 1: as = 0. Therefore the only contribution is from

!arkack » which is nonnegative.

Case 2: Ay # 0 and Aok = 0. Therefore the term

2
detagy - larkaik[ - lagag

is nonnegative since at least one of the terms
‘arkaik‘ or 1ackaik\ is zero.
Case &: aik # 0, arkaCk # 0. Therefore

2
Sl * lapag ] - lagag, ] - lagag, b = o

We conclude therefore that o, >0 for 1 < i, r, ¢ £ pP-U

r r
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Example 7: The matrix

20 -10 0
Q = |-10 35 -30
0 -30 36

is a paramount matrix [24]. Q however does not satisfy (3.4-6)
since
= + 0 - 10 - 30 = -5.
Q2,l,3 35 0 1
Accordingly, the paramountcy condition and the condition of

(3.4-6) are independent.
Next let Q' be the paramount matrix

1
2 2 9 15 6

-

Cederbaum has shown that Q' cannot be displayed as in the hy-

pothesis of (3.4~6). However Qi o 2_0 for 1 f_i, r, ¢ < 4.
> 0

Consequently, paramountcy and the condition that Qi,r,c >

are not sufficient to guarantee the unimodular decomposition
of Q'.

To conclude this subsection we show that the modified
topological matrices introduced by Cederbaum [31] can be ex-
tended to generalized networks. In fact, we show that a
"modified" matrix exists for a generalized network if N e.N.
There seems to be some ambiguity in the literature as to Jjust
when a "modified" matrix exists for a p-port resistance net-
work. For instance, in [31] networks for which modified
matrices exist are called "nonsingular" p-port networks and
the meaning of nonsingular is left undefined. We show that
a modified topological matrix exists if XN exists.

Let N = (MR, R, D; E) ¢ N. By (3.3-1) and Table 2-2,

line 2, there exists a representative matrix for R of the
following form
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where y = dimension (R). Moreover, by (2.2-6) we can assume
that R is a totally unimodular matrix. We define an augmented

R +
matrix R :

| !
! !
R 10 : 1 :
I !
+
R 1is totally unimodular and consequently can be viewed as the

. . +
representative matrix of a regular vector space R . Set

+ +

N = (MR+’ R, D; EUE")

v + .
where E' = ien+l""'en+p'}' N is called an augmented network
for N and N ¢ N. Set
*
+
(R) =11 | -R t:—R t].

n-pt 11 + 21
+. % +
Clearly (R ) 1is a representative matrix for IR .
The variables asscciated with the network N are, as usual,

2y
ua=}""-
- 1u
-P
and - ~
LAY
w=|-""1,
- w
-Pp

Tgb )
+ - -
- _F +
_..p+p!
.—pl
and L .
T_vzb
+ - W
w = w = --—_1?-
w ~p T .
w —ptp’
L. p-
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+
The augmented network N can be viewed as one which is
obtained from N by adding p' additional ports to N.
The following two results are easy consequences of the

construction of R+ from R.
Theorem (3.4-7): If f- £ R+, then u e R.
Theorem (3.4-8): If Qf e LRY and g}), = 0, then w ¢ LR.

Theorem (3.4-9) extends the modified topological matrices
of p-port resistance networks to generalized networks.

Theorem (3.4-9): Let N = (MR’ R, D; E) ¢ N and R be a totally

unimodular representative matrix for R:

RJZ : lp
R=]l—-== === = u X N
R21 : Op'xp
Then
N 7
XZV =RDR,
where
A "b t ‘-’1
R=R, - Ry DRy [Rg; DRpy1 = Rogpe

Moreover, o matrix R in the above form always exists. The

matriz R is called a modified topological matiix.

Proof: From (3.3-2) it follows that

t t
R)p PRy P Ry PRy
T (1)
N t !
R21 D R]_]_ | R21 D R21
and
+ _ + (2)
Ep (XN+)11_p .
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Set
lI‘P lP
+
u = == = |- u_ . (3)
—ptp' t -1 —p
Zp! (Ryp DRoy) 7 Ry PRy
t .
i 1
Then det[RZIDR21] # 0, since the rows of R21 are linearly
independent. +
If we specify u_ arbitrarily in (3) and apply u , to
+ —-p —ptp
N we get
V—VP
+
= = = 4
W Spipr T Epep N @

In view of (3.4-7) and (3.4-8), the variables u and w, under
the conditions imposed by (3), in N+ satisfy the network equa-
tions of N. Since both N and N' are in N the relation between

. +
ﬂp and _Llpln N , under the constraint (3), is precisely

w_ ==X u . (5)

Next we obtain an alternative expression for __w_pin terms
of y_poperating in N under (3).

Using the constraint (3) and the fact that 3+ e R and
_Vf > .LR+, it is not difficult to see that

t t
R + = (6)
118p T Ry 8, =8y
- 7
Fln¥y vt =20 "
and
- 8
R ¥y = & @
Combining (6) and (3) we get
u, = fltu . (®)
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Also from (7) and (8) we get

ﬁp: - REb. (lO)
Using w,=Du,, (9) and (10), we arrive at

w_= - [ﬁl)ﬁtlll . (11)

-P —Pb

Equation (11) describes the relation between the variables w
+ . .
and_gp in N under constraint (3), and (5) describes the iden-

. . EY I\t
tical relation between y}) and E}p' Consequently XN = RDR".
As was previously indicated, a matrix R of the desired
form exists if N € N. O

3.5 Singular Immittance Matrices

As is well known in the case of p-port resistance networks,
when an immittance matrix is singular the linear dependence of
the columns (or rows) contains information on the port structure
of the network. 1In this subsection we show how the linear de-
pendence of the columns of XN is reflected in the structure of

the matroid MR associated with N. More precisely, we show that

the circuits of MR X Ep are in 1-1 correspondence with the sets
of minimal dependent columns of XN.
Theorem (3.5-4) deals with a converse problem for paramount
matrices. In the previous section we showed that if N ¢ N, then
XN is a paramount matrix. The converse problem 1is very diffi-

cult, that is, given Q, a p X p paramount matrix, determine a
generalized network N € N (if one exists) satisfying XN = Q.

This converse problem is called the synthesis problem for gen-~
eralized networks. In this subsection we prove an interesting
result on singular paramount matrices which has bearing on the
synthesis problem. We show that the linear dependen?e of the

columns of a singular paramount matrix cannot be arbitrary and
in fact its null space must be regular.

Theorem (3.5-1): If N = (Mys R, D; E) € N, then
t
b

“y Xy gp =u,DUy.
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t
Proof: Since u € Rand w € LR, it follows that ubwb+_11py_p=0.

Using w,=Du, and Ep = - XNEp' the theorem follows. Q

The next result relates the minimal dependent columns of
Xy to the structure of the matroid MR'

Theorem (3.5-2): Let N = (MR’ R, D; E) ¢ N. Then a set of
eolumns of XN forms a minimal dependent set i1f and only if the

eorresponding set of elements in Ep 18 a circuit of MR'

Proof: Let CcC Ep be a circuit of MR' Then there exists an

elementary vector u'e R such that ”E'” = C. Clearly the pair
u=u' and w = 0 satisfy the network equations, and since NeN
it follows that

=0, (1)

where u' = o |°
—p
We claim that the columns of (1) which are linearly de-
pendent form a minimal dependent set.

Assume there exists a nonzero vector E"p such that

XNE-;;) =0
and
"]  fla]l, (2)
9
where u" = " |+ Since N e N, u, cen be specified arbitrarily
=P

and therefore by (3.5-1) u" ¢ R. But then (2) contradicts the

hypothesis and accordlngly the dependent columns in (1) form a
minimal dependent set.

To show necessity suppose

XNEp =0 (3)

and that the dependent columns of (3) form a minimal dependent
set. Again since N ¢ N, up can be specified arbitrarily and
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therefore by (3.5-1) the vector

0

u = |-

u
-Pp

satisfies u e R and ”g_” (__:Ep.
Assume u is not elementary. Then there exists a nonzero

t . .
vector v = [gt K;] satisfying

v ]l < llull

and
= 0. 4
XNjip 0 (4)
However, (4) contradicts the hypothesis and accordingly u is
elementary. Therefore there exists a circuit C C Ep such that
c=|lull. o

Theorem (3.5-2) shows that, in the case of the generalized
network, matroid theory allows a geometric interpretation of
the singular immittance matrices. For the cases NZ and NY,

Theorem (3.5-2) specializes to the following well known result.

Theorem (3.5-3): Let Z(Y) be the o.c. impedance (s.c. admittance)
matrix of a resistance metwork whose network graph is G. Then
the minimal dependent columms of Z(Y) are in a 1-1 correspondence
with the polygons (bonds) of G which are contained in Ep'

Previously we defined what is meant by a primitive (elemen-

tary) representative vectorft with respect to some vector space
R. It should be clear that if U is a collection of n-tuples X,
then we can use the term primitive (elementary) vector in U with-
out reference to a vector space R. Moreover if U is closed under
addition of n-tuples and multiplication by a member of F, then we
call U a vector space of n-tuples on E over the field F. The
reference to a set E is necessary if, for some x e U, the nota-
tion ”Xllis to have meaning. U (a vector space of n-tuples) is
Called_regular if F is the field of real numbers and correspond-
ing to each elementary vector x € U there exists a primitive

Vector x' ¢U satisfying

[ENEREY
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In the next theorem we characterize the null space of any
paramount matrix. If Q is a p x p matrix, the null space N(Q)
of Q is the set of all p-tuples X which satisfy Qx =0:

N(Q) = {x | 0x =0}.

Theorem (3.5-4): Let Q be a p x p paramount matrix; then N(Q),
the null space of @, is a regular vector space of p-tuples on
Eb(a(Ep) =rp).

Proof: Without loss of generality, assume the first r columns
of Q form a minimal dependent set.
ll'-'-,lr 1
Assume there exists a principal minor ¢© = 0,
11""'lr-l

where 1 f_il <.i.% 1 . LE Since Q is paramount, then any

th . . . . .
(r-1) -order minor using columns 11, cees lr_l is zero. Ac-

17 e ir—l are linearly dependent; but this

. h .
contradicts the hypothesis. Therefore every (r—l)t —-order prin-
cipal minor formed from the first r columns is nonzero.

Let Qr be the submatrix formed from the first r rows and

cordingly columns i

columns of Q; by hypothesis det[Qr] = 0. If we let Aij be the
cofactor obtained from Qr by crossing out row i and column j,

it follows from Jacobi's theorem [36] that

A A, = A LA, . (1)
11 33 1j J1

However, Q is paramount and consequently

Bge > 1o b= 1a, 1 (2)

for all 1 <k < r and 1 <h <r. Using (1) and (2) and the fact
that A # 0 for 1 <k < r, we conclude that all the first co-

factors of Qr are equal in absolute value.

It follows from the above analysis that the coefficients of

the linear relation of the first r columns of Q can be chosen to
be *1.
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Since the first r columns form a minimal dependent set the
vector X, whose coordinates are the coefficients of this linear
relation, is elementary in N(Q). Moreover, we have shown that
there exists a primitive vector x' such that H§f“ = ngland
ox'= 0.0

Theorem (3.5-4) enables one to exhibit a paramount matrix
in a very revealing form.

Theorem (3.5-5): Let @ be a p x p paramount matrix of rank s
I,...,8

satisfying Q(] ) # 0. Then @ can be expressed as
e

.. 58
2
§=5 4, B,
where B is an s x p totally unimodular matrix and a2 18 the sub-

matrix formed from the first s rows and columns of Q.

Proof: vPartition Q as

Qs : Q12
o={-"7" | (1)
Q12 ! Q22
where QS = s X s,
Qi = 8 X (p-s)
Q22 = (p-s) x (p-s). |
Set %
- |
2 I “sx(p-s)
R
T = |-
t -1 1
Q12 Qs ! lP—S
and form TQ: !
b=l
Fl ] QS Q12
_____ oo = = = - = = =
R = t -1
I
(p-sixs ¢ 2227012 % P12
~ I



264 BRUNO AND WEINBERG

Since det[T] # 0, the rank of TQ is s and accordingly

t -1
- = . 2
292 Q12 Qs le O(p—S)><(p—S) (2)
Setting B = [lS EQ;llel and using (1) and (2) we can express
Q as
t
= 3
Q=8 Q_ B (3)

Let X be a p-tuple satisfying Qx = 0. Then

(8°0 ) (Bx) = 0. (4)

. t . . .
The matrix B QS is p X s and of rank s and the matrix BX 18

s X 1. Accordingly (4) implies
Bx = 0.

Conversely, if x is a p-tuple satisfying Bx = 0, then
Qx = 0.

The above analysis shows that
N(Q) = {x|Bx=0}. (5)

It should be clear from the construction of B and Equation (5)

that the row space of B* is precisely the transpose of the vec-
tors in N(Q), where

B*

& -1
= 179059 1 1-6)

x_t
(Note that B'B = O(p—s)xs') By (3.5-4) N(Q) is regular and

therefore the theorem follows using (2.4-4) and (2.2-6). O

An open question for generalized networks is to determine
whether for every paramount matrix Q there exists a generalized
network N such that XN = Q. The case of the singular paramount

matrix poses an interesting test in view of (3.5-2). Conse-
quently, if we conjecture that N exists for any Q, then Theorenl
(3.5-4) must also be true. Since we have in fact shown (3.5-4)
to be true, the question remains an open one. This problem
}nvolves the principle of duality and is therefore considered
in more detail in the following subsection.
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3.6 Duality

Duality in electrical networks has to do with the relation-
ship between the admittance and impedance formulations of elec-
trical networks. One might erroneously conclude that, with
respect to p-port resigstance networks, theorems about impedances
are immediately true for admittances and vice versa. Cederbaum
[23] has shown the existence of a paramount matrix which is the
o.c. impedance matrix of some 4-port resistance network but is
not the s.c. admittance matrix for any 4-port resistance network.
In this subsection we will discuss the notion of duality in
generalized and p-port resistance networks.

Let N = (M,, R, D; E}). We define N*, the dual network of

N as

N* = (M v LR, plm).

-1
Theorem (3.6-1): Let N, N'e N. Then ()77 = Xyx

Proof: Theorem (3.6-1) is easily seen to be true by comparison
of the network equations for N and N*. O

Every network (in N or not in N) has a dual network.
A paramount matrix Q is said to be realized by N if Q = Xt

The network N is called a realization of Q.

Two networks N(l) and N(Z) are said to be equivalent if
XN(l) = XN(z).

We denote by [N], the class of all networks equivalent to

N, that is, the set of all networks which realize Q is.equal to
[N], where X_ = Q. The equivalence class [N] is sometimes de-

noted by E(Q), where Q is the paramount matrix satisfying Q:=XN.
We point out that in this discussion the set E is not fixed and

therefore if

1) (D
s iy, RY, 51 (),

and
(2) (2 L),

(2)
Ma(zyr R D

N

1l

are two different networks in [N], it is not necessary that

2
E(l) = E(z). However, a(Eél)) = d(Eé ))-
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A conjecture that so far the authors have been unable to
prove or disprove is

Theovem (3.6-2): (Conjecture) Let § be a p x p paramount
matrix; then E(Q) # 4.

This conjecture, in its relation to singular paramount
matrices, was mentioned at the end of the preceding subsection.
Notice that in Figure 10 the class of regular matroids

partitions into four sets:

(i) H : nonplanar matroids - Type H.
(ii) X : nonplanar matroids - Type K.
(iii) P : planar matroids.
(iv) O : regular matroids not in H, K or P.

Let Q be a p x p paramount matrix and suppose E(Q) # ¢.
Then for each N e E{(Q), the matroid MR associated with N is in

exactly one of the classes H, K, P or O. Therefore we can
partition E(Q) into four sets: H{(Q), K(Q), P(Q) and 0(Q),
where

H(Q) = {NIN ¢ E(Q) and the matroid associated with N is in
K(Q) {NiIN € E(Q) and the matroid associated with N is in
£
£

P(Q) = {NIN ¢ E(Q) and the matroid associated with N is in
0(Q) = {NIN ¢ E(Q) and the matroid associated with N is in

O:U‘?ﬁ';d
[N P

We have the following very important results based on
Subsection 2.6.

Theorem (3.6-3): Let @ be a fixed paramount matvrix and suppose
E(Q) # ¢ and E(Q) is partitioned into the sets H(Q), K(Q), P(Q)
ayiO@)dq%wdahW& Then @ is the o.c. impedance (s.c. ad-
mittance) matrix of some network if and only if at least one of
the sets K(Q) or P(Q) (H(Q) or P(Q)) is nonempty.

Theorem (3.6-4): Let Q be a fixed paramount matrix and supposé
E(Q) # ¢ and that T(Q) is partitioned into the sets H(G), K(Q),
P(Q) and 0(Q). Then Q is both the o.c. impedance matrix of
some netwqu and the s.e. admittance matrix of some network if
and only if at least ome of the sets H(Q) or P(Q) is nonempty
and at least one of the sets K(§) and P(Q) is nonempty.

From (3.6-4) we obtain the well known results that if Q

has a planar network realization N, = (P(G), I, Z.; E(G)), then
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there is a graph G' such that N, = (B(c'), V', Yg; E(G')) and

Y
X =X _.
NY NZ

Obviously G' can simply be taken to be G* the dual graph of G

and Yg = Zb. We state this as a theorem.

Theorem (3.6-5): Let @ be a fixed paramount matrix and suppose
E(Q) # ¢ and E(Q) 1s partitioned into the sets H(Q), K(Q), P(Q)
and 0(Q). Then if P(Q) # ¢, there exists at least two mnetworks
N, and Ny, in E(Q) such that X, =X

Vg Wy

The above results are well known but to the best of the
authors' knowledge have not been previously presented in the
context of the theory of regular matroids.

In the remainder of this subsection we discuss the notion
of duality in electrical networks. As we stated in Subsection
2.5, duality, in general, implies that we have two sets of (dual)
quantities and operations such that if a theorem is proved in
terms of one set, then the same theorem with dual quantities in-
serted everywhere yields a true theorem. We have indicated how
matroid theory forms a rigorous basis for a duality theory for
graphs and in Table 2-3 we have listed the dual concepts for
graphs and the corresponding matroid-theoretic quantities. .

Since our generalized networks are based on matroid-theoretic
ideas, the specialization of theorems on generalized networks to
theorems on p-port resistance networks induces a duality theory
for p-port resistance networks. Theorems (3.3-4) and (3.5-3) are
examples of how specialization of matroid-theoretic results leaqs
to two graph-theoretic results in each case. Notice also that in
(3.3-4) it is essential to replace the dual operations as well as
the dual quantities. '

We can say, in the context of our definition of duality (see
Subsection 2.5), that Z and Y are dual quantities. The extent of
this claim is the following. If one proves a theorem for XN, the

immittance matrix of a generalized network in N, then the theorem

is immediately true in terms of any X  and X , where N,, Ny e N.
Z Y

Thus we have a precise meaning for duality and can accordingly

determine whether an appeal to duality is justified in any par-

ticular case.
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Many books on network theory present "duality" concepts
from a much narrower point of view than discussed here and have
consequently fostered some incorrect notions. We present a typ-

ical approach to "duality." Let NY = (B(G), V, Yb; E(G)) and
NZ = (P@c*), 1, Zb; E(G*)) where G* is a dual graph of G (G is
necessarily a planar graph). The network equations for NY and

Nz are shown in Table 3-3. In Table 3-3 we use the notation V(G)

and I(G) for the coboundary and l-cycle spaces, respectively, of
G. Since G* is a dual graph of G, I(G*) = V(G) and V(G*) = I(G)
and consequently, if Zb = Yb, then XN = XN . Clearly, if we

Y Z
restrict our attention to networks whose network graphs are pla-
nar, then we can make the statement that impedance and admittance
are tndistinguishable quantities, not dual quantities. The du-
ality of electrical networks as depicted in Table 2-3 is not one
in which impedance and admittance blend into one concept; on the
contrary, impedances and admittances are different but dual quan-
tities in general.

N
Y NZ
(Network Equations) (Network Equations)
i = Y = i
p T pIp Yp T iy
v £ V{(G) i e I(G*)
ie 1(G) v £ VI(G*)

Table 3-3 Planar Networks.

, As we pointed our previously, matroid theory forms the
rigorous basis of the duality within the same graph. This con-
cept of duality is so important that we feel some further dis-
cussion is Jgstified since all too often appeals to duality are
made and'no Justification is given. We consider the following
problem in order to make a point. Suppose we were given Table
2-3 and told that columns 2 and 3 were "dual” quantities but we
were unaware of the corresponding matroid-theoretic concepts.
Then if we were asked to determine under what conditions we

would be justified in appealing to duality for a rigorous proof
of a dual theorem, what must we do?

.
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There is one approach to this problem which is by far the
most widely used and does not actually use duality to prove the
dual theorem. Essentially, the technique is to consciously, or
unconsciously, substitute the dual quantities into the proof of
the original theorem and make the observation that the proof
goes through in the dual case; that is, one proves the dual the-
orem without an appeal to duality. In effect one must prove two
theorems, the original and the "dual" theorem.

A more sophisticated approach to this question would be to
prove a theorem concerning the dual quantities, a theorem which
justifies an appeal to duality. Such a theorem would necessarily
set down the precise conditions under which one could use duality
as a rigorous proof of a "dual" theorem. To establish such a
rigorous basis for Table 2-3 we would, as we mentioned at the
beginning of this paper, have to invent matroid theory since it
s the formal basis of the dual nature of the same graph. Ma-
troids are a generalization of both the bond and polygon concepts
and the axioms of matroids are the "rules" under which proofs of
theorems must be carried out if duality is justified. Thus we
state again that formal duality relies on a single concept within
which theorems can be proven and subsequently specialized to two
(or more) specific cases.

Accordingly, we should be able to detect whether an appeal
to duality in any particular case is justified. For example,
suppose it is asserted that, since Z and Y are dual quantities,
if a paramount matrix O can be realized by NZ' then there exists

a network NY which also realizes Q. This kind of claim has no

basis in our definition of duality. Clearly, there is no appeal
to a matroid-theoretic theorem which can be specialized in two
ways. There isn't even an appeal to a theorem proven in ?erms
of the polygon (bond) concepts which can be given a dual inter-
pretation. Accordingly, such an assertion connot be based on .
duality concepts. Theorem (3.6-3) shows when a paramount matrix
can be the o.c. impedance (s.c. admittance) matrix of some net-
work. The conditions are, of course, dual conditions.

Theorem (3.6-5) gives a sufficient condition for two net-
works NY and NZ to have identical immittance matrices. However,

consider the following: suppose P(Q) = ¢ and H(Q) # ¢, that is,
Q is a p X p paramount matrix which is only realized by nerorks
whose network graphs are nonplanar. An important problem-ls to
determine whether (i) K(Q) = ¢ in general, (ii) K(Q) 7‘ ¢ in gen-
eral, or (iii) that, depending on Q, either (i) or (11)'15 pos-—
sible. Duality cannot be expected to answer this question or
similar ones. A theory of equivalent networks must be deve%oped
in order to understand the issues involved. Such a theory is

bresently nonexistent.
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4., CONCLUSION

We have defined a new concept, namely, a network based on
a matroid which we call a generalized network, and then have
applied this concept to the problems of network analysis and
synthesis. Unlike networks based on graphs, an important prop-
erty of generalized networks is that they satisfy the principle
of duality. To make the paper self-contained we have given in
Part I an introduction to basic matroid theory. Using this
theory we have then set up the analysis problem for generalized
networks and finally considered the synthesis of p-port resis-
tance networks. We derive new results in both network analysis
and synthesis and generalize some old results for networks on
graphs. It is believed that the formulation of the concept of
the generalized network and the setting up of the network anal-
ysis problem for these networks will yield computationally effi-
cient analysis techniques for RLC networks. Finally, the pre-
sentation of the synthesis problem for the p-port resistance
network in terms of generalized networks may aid in solving this
crucial problem.
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